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一、一阶倒立摆仿真

（一）、一阶倒立摆模型

1.一阶倒立摆系统结构

控制系统为使用电机传动系统驱动的安装在滑块上的一阶倒立摆，系统示意图如

图 1.

图 1 安装在滑块上的一阶倒立摆

如图 1所示，电机传动系统驱动的安全在滑块上的一阶倒立摆由电机、传送

带、滑块和倒立摆组成，系统各部分参数如表 1所示。
表 1 系统参数

参数 定义 数值

M 滑块质量 0.5kg
m 摆锤质量 0.3kg
l 摆杆长度 0.3m

�� 电机速度常数 0.0186���
�∙�

�� 电机转速常数 0.0135��
�

�� 转子惯量 0.000007���2

�� 齿轮比 26.9
�� 绕组电阻 1.3Ω
�� 电机轴半径 0.006m

我们使用如上安装在滑块上的一阶倒立摆系统比较 PD控制器、LQR控制器

和MPC控制器三种控制方法的控制效果。
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2.一阶倒立摆建模

对系统进行受力分析，得到系统总动能（K）和总势能（V）为：

� =
1
2

��� 2 +
1
2

�(��
2 + ��

2)

� = �������
其中：

�� = �� − �� �����

�� = �� �����

使用拉格朗日方程得到系统非线性模型：

� = � − � =
1
2

� + � �� 2 +
1
2

��(��� 2 − 2�� �� ���� − �����)

使用欧拉-拉格朗日公式推导出对应两个自由度（滑块运动和倒立摆转动）的

运动方程：

� =
�
��

��
���

−
��
��

= � + � �� − ��(�� ���� − �� 2����)

0 =
�
��

��
��� −

��
��

= ��� − �� ���� − �����

在平衡点（θ=0）处将非线性模型线性化得到状态空间模型：

�� = �� + ��
� = �� + ��

其中：

� = [� � �� �� ]�

� =

0 0
0 0

1 0
0 1

0 �32
0 �42

�33 0
�43 0

=
0 0
0 0

1 0
0 1

0 3.804
0 45.38

−0.05591 0
−0.6523 0

�32 =
���� − ����

��(�����
2��
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������
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��(�����

2��
2 + �)
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��������

2��
2 + ���� + ���� − ����

���(�����
2��

2 + �)
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������

2(� + �)
���(�����

2��
2 + �)
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� =

0
0

�����
��(�����

2��
2 + �)

����(� + �)
���(�����

2��
2 + �)

=
0
0

0.1117
1.304

� = 1 0
0 1

0 0
0 0

� = 0
0

3.能控性能观性分析

使用MATLAB计算系统的能控性和能观性矩阵为：

�(�, �) =
0 0.1117
0 1.3036

−0.0062 4.9593
−0.0729 59.1621

0.1117 −0.0062
1.3036 −0.0729

4.9593 −0.5545
59.1621 −6.5421

� �, � =
1 0
0 0

0 0
1 0

0 3.804
0 −0.2127

−0.0559 0
0.0031 3.804

能控性矩阵和能观性矩阵的秩都为 4，系统在平衡点处能控且能观。

（二）、控制方法比较

1.LQR控制器

线性二次型控制器（Linear Quadratic Regulator， LQR）是一种全状态反馈

控制器，给定性能（即状态跟踪）和控制力（即执行器输入大小）的权重的情况

下，优化地寻找控制增益����。LQR控制器可以表示为成本函数的优化问题：

min � =
0

∞
(� ���� + ����)��, � ∈ ��

�. �. �� = �� + ��
� = �� + ��

其中平方半正定方阵 Q 和正定矩阵 R分别表征性能权重和控制力权重。本

次仿真中我们使用的权重矩阵为：
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� =
1000 0

0 4000
0 0
0 0

0 0
0 0

0 0
0 0

� = 1
LQR控制器增益和优化问题解 S之间存在关系：

� = �−1���
由于优化问题可能存在多组解，也对应的存在多个控制增益。其中使特征方

程（A-BK）的特征值全为负值的增益 K是唯一可以使系统稳定的增益。另外，

由于 LQR控制是状态反馈控制器，需要一个前置补偿器��来计算状态的稳态值。

本次仿真中使用的增益和前置补偿器为：
���� = −31.6228 113.3629 −240.1784 33.5693

�� =− 31.6228
LQR控制器的结构图如图 2所示。

图 2 LQR控制器

LQR控制器的好处是已于调整控制器，因为调整参数与系统的直观物理参数

直接相关。然而，当系统存在非线性或扰动时，LQR控制器可能表现较差。

LQR控制一阶倒立摆的仿真结果如图 3所示。

2.PD控制器

比例微分（Proportional-Derivative，PD）控制器是工业上常用的经典控制器，

不断计算参考点和测量输出的误差� = � − �和误差率�� = �� − �� ,并通过增益��

和微分增益��决定控制输入:

� = ��� + ����

本次仿真使用两组 PD控制器，控制图如图 4所示。
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图 3 LQR控制一阶倒立摆仿真结果

图 4 PD 控制器控制一阶倒立摆控制图

其中控制增益为：

��1, ��1 =− 50, − 400

��2, ��2 = 150,100

控制输入为：

� = ��1�� + ��1�� � + ��2�� + ��2�� �

PD 控制的优点是易于开发和设置，且计算成本极低。缺点是当涉及到多个

PD控制器时很难调整。另外，当存在系统非线性或干扰的情况下 PD控制器可

能表现较差。
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使用 PD控制器控制一阶倒立摆的仿真结果如图 5所示。

图 5 PD 控制器仿真结果

3.MPC控制器

模型预测控制器（Model Predicative Controller，MPC）是一种相对现代的反

馈控制器，通过循环优化预测范围内的成本函数循环计算控制输入值。MPC可

以表述为优化：

min � = �� − �
�. �. �� = �� + ��

� = �� + ��

���� < � < �����

���� < �� < �����

其中��和�分别是预测属于和测量输出。

MPC的控制参数包括采样时间��,预测长度�ℎ,控制范围�ℎ,输入输出权重W

和输入输出控制边界（����，�����，����，�����）。本次仿真使用的控制参数

为：

�� = 0.001�
�ℎ = 10

�ℎ = 4000
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���� =− ���, ����� = ���

���� = �
� = −∞

−0.05���

����� = ∞
0.05���

控制图如图 6所示。

图 6 MPC控制器控制图

仿真结果如图 7所示。

图 7 MPC仿真结果
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（三）、总结

本次仿真中使用 LQR、PD和MPC三种控制器，且设置仿真时间为 25S，控

制目标为 x=0.5，θ=0。由上述仿真结果可以发现，三种控制方法都在仿真时间

内达到了控制目标，且稳态误差均较小。

为比较三种控制方法，统计了三种控制方法的跟踪性能和计算时间消耗如表

2所示。

表 2 跟踪性能和计算时间

稳定时间

�������(�)
上升时间

�����(�)
过冲

OS
稳态误

差

���

计算时间

��������(�)

L
Q
R

� 15.3 10.6 0.02 0.02 0.12
� 3.8 - 0.04 0.005
�� 0.2 - 0.05 -0.001
�� 1.4 - 0.06 -0.002

P
D

� 15.4 10.6 0.008 0.008 0.33
� 11.1 - 0.05 0.004
�� 0.1 - 0.05 0.0
�� 3.2 - 0.05 -0.001

M
P
C

� 7.2 4.8 0.0 0 76.9
� 0.2 - 0.005 0
�� 3.6 - 0.2 0
�� 0.47 - 0.4 0

由表 2可见，在所有跟踪性能上，MPC都优于 PD和 LQR,LQR和 PD的跟

踪性能相近。计算时间消耗方面，LQR 计算时间是MPC的 0.16%，PD计算时

间是MPC的 0.43%，这是因为MPC需要更多的计算资源循环进行系统模型的预

测和控制输入的优化。

图 8到图 10给出了三种控制方法的每个状态和控制输入随时间变化的曲线。
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图 8 LQR控制器状态和控制输入变化曲线
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图 9 PD 控制器状态和控制输入变化曲线
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图 10 MPC 控制器状态和输入变化曲线
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二、三阶倒立摆的建模

（一）、三阶倒立摆的系统描述

三阶倒立摆系统的模型如图 1 所示，该系统主要由沿轨道自由运动的小车

和固定在小车上的摆杆组成，摆杆与摆杆之间，小车与摆杆之间通过转轴连接，

各级摆杆可以绕各自的转轴在轨道所在的铅直平面内自由转动，并在转轴处有电

位器分别用来测量上摆杆，中摆杆和下摆杆的角度变化，轨道一端装有用来测量

小车位移的电位器。直流电机通过传送带控制小车在轨道上的运动，从而使摆杆

稳定在竖直向上平衡点。

图 1 三阶倒立摆系统的模型

采用分析力学中的拉格朗日方程建立三阶倒立摆系统的数学模型。为明确物

理意义和推导的方便，忽略了一些次要因素，做出如下假设：（1）除传送带外，

整个系统看作刚体；（2）皮带轮和传送带之间无相对滑动，传送带无拉长现象，

且传递作用的延迟忽略不计；（3）整个电路系统的传递延迟忽略不计，放大器

和电位器是线性的；（4）小车运动过程中所受到的摩擦阻力正比于小车速度，

摆杆转动时所受到的阻力矩正比于摆杆的角速度。定义系统各参数如表 1 所示。

表 1 三阶倒立摆系统物理参数

符号 物理意义 数值 符号 物理意义 数值

� 小车位移 被控变量

/m

�1 下摆转轴

到其重心

的距离

0.2449 m

�1 下摆角位

移

被控变量

/rad

�2 中摆转轴

到其重心

的距离

0.193 m
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�2 中摆角位

移

被控变量

/rad

�3 上摆转轴

到其重心

的距离

0.03405 m

�3 上摆角位

移

被控变量

/rad

�1 下摆对质

心的转动

惯量

0.0119 kg

�0 小车质量 2.4 kg �2 中摆对质

心的转动

惯量

0.0069 kg∙

m2

�1 下摆质量 1.323 kg �3 上摆对质

心的转动

惯量

0.0291 kg∙

m2

�2 中摆质量 1.389 kg � 外部作用 N

�3 上摆质量 0.8655 kg �� 整个系统

的输入转

换增益

9.722 NV

�1 下摆摆长 0.4002 m �0 小车与滑

轨之间的

摩擦系数

13.611 N∙

s/m

�2 中摆摆长 0.332 m �1 下摆与转

轴之间的

摩擦系数

0.0045 N∙

s/m

�3 上摆摆长 0.72 m �2 中摆与转

轴之间的

摩擦系数

0.0045 N∙

s/m

� 重力加速

度

9.81 m/s
2 �3 上摆与转

轴之间的

摩擦系数

0.0045 N∙

s/m

（二）、三阶倒立摆系统模型的推导

类比于一阶倒立摆，由总能量得到拉格朗日方程并使用欧拉-拉格朗日公式

推导出四个自由度（滑块移动和三个摆杆转动）的运动方程：

H1 z�� z�� � = H2 z�� , z�� � z�� � + h3z�� + h0u# 1

z�� = x, θ1, θ2, θ3
T# 2

ℎ0 = 1000 T# 3
其中：

�1 ��� =
�0 �1 cos �1 �2 cos �2 �3�3 cos �3

�1 cos �1 �1 �2�1 cos �2 − �1 �3�1�3 cos �3 − �1
�2 cos �2 �2�1 cos �2 − �1 �2 �3�2�3 cos �3 − �2

�3�3 cos �3 �3�1�3 cos �3 − �1 �3�2�3 cos �3 − �1 �3 + �3�3
2

# 4
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其中系数由下式给出：
�0 = �0 + �1 + �2 + �3
�1 = �1�1 + �2�2 + �3�1

�2 = �2�2 + �3�2

�1 = �1 + �1�12 + �2�1
2 + �3�1

2

# 5

�2 ��� , ��� � =
− �0 �1 sin �1 �1� �2 sin �2�2� �3�3 sin �3 �3�

0 −�1 − �2 �2�1 sin �2�2� �3�1�3 sin �3 − �1 �3�
0 − �2�1 sin �2 − �1 �1� + �2 −�2 − �3 �3�2�3 sin �3 − �2 �3� + �3

0 − �3�1�3 sin �3 − �1 �1� − �3�2�3 sin �3 − �2 �2� + �3 −�3

# 6

ℎ3 z�� = 0 �1� sin �1 �2� sin �2 �3��3 sin �3
� # 7

(1)中描述的非线性模型在零输入的垂直位置处线性化。状态向量定义如下:

� = � �1 �2 �3 �� �1� �2� �3� �

将线性模型以状态空间形式表示，如下所示：

�� = 0 �4×4
�−1� �−1�

� + 0
�−1ℎ0

� = �� + �� # 8

� = ��
其中：

� =

�0 �1 �2 �3�3
�1 �1 �2�1 �3�1�3
�2 �2�1 �2 �3�2�3

�3�3 �3�1�3 �3�2�3 �3 + �3�32

� =

0 0 0 0
0 �1� 0 0
0 0 �2� 0
0 0 0 �3�3�

� =

− �0 0 0 0
0 − �1 − �2 �2 0
0 �2 − �2 − �3 �3
0 0 �3 − �3

� =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
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TIPS 状态方程(8)的系数矩阵如下：

� =
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 −12.4928 −2.0824 2.2956 −5.1127 0.0075 0.0024 −0.0053
0 67.1071 65.2564 −71.9704 14.0176 0.0039 −0.1948 0.1659
0 144.5482 −394.2536 272.1049 5.2021 −0.4334 1.1287 −0.7492
0 −300.4564 512.8310 −257.9198 10.8077 0.6476 −1.3621 0.826

� = 0 0 0 0 3.651 −10.012 −3.716 7.720 �

能控性矩阵和能观性矩阵的秩都为 8，与状态数量相同，因此系统在平衡点

附近能控且能观。并且代入一组真实值后算得特征值不全为负，说明该系统不稳

定，需要施加控制。

三、LQR的控制实现

（一）、LQR 简介

LQR 即线性二次型调节器（Linear Quadratic Regulator－ LQR），在现

代控制理论中占据着十分重要的位置，其相关问题也一直受到控制界的普遍重视。

由于线性二次型（LQ）这一数学模型的性能指标易于计算、分析和处理，且利用

该数学模型设计得到的倒立摆系统的动态特性和鲁棒性较好，还可以得到线性反

馈结构，因而在实际的系统设计中取得了广泛应用。美中不足的是，利用线性二

次型方法实现最优控制时，其效果依赖于加权矩阵Q、R的选取。如果选取不当，

则求解得到的控制律往往无法满足实际系统的性能需求，当然也谈不上“最优”。

（二）、LQR 最优控制策略

不失一般性，假设给定系统为线性定常系统，其状态方程为:

         
     







txtCty
tutBtxtAtx
，   00 xtx 

其中， x为 n维状态向量，u为 r维输入向量， y为m维输出向量， CBA ,, 分别

为 nmrnnn  ,, 维系数矩阵。

相应的二次型性能指标函数为：
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0

1 1min ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

ftT T T
f f tu

y t Fy t y t Q t y t u t R t u t dt    
二次型目标函数的第一项

1 ( ) ( )
2

T
f fy t Fy t 表示稳态误差, F 为其加权矩阵；第二项

0

1 ( ) ( ) ( )
2

ft T

t
y t Q t y t dt   表示暂态误差的总度量， ( )Q t 为其加权矩阵且是时变的；

第三项
0

1 ( ) ( ) ( )
2

ft T

t
u t R t u t dt   表示暂态过程中消耗的控制能量总和， ( )R t 为其加

权矩阵且是时变的。 ( )Q t 是半正定阵， ( )R t 是正定阵，即     0,0  tRtQ 。

当系统受到外界干扰并偏离零状态时(外界干扰已消失)，施加什么样的控制，

可以使得系统状态回复至零状态且使得性能函数最小呢？这就是我们所说的最

优控制。由最优控制的理论我们知道，使得函数最小的最优控制律为：

KXPXBRU T  1*

上式 P是 Riccati方程的解，K是线性反馈增益矩阵。我们求解代数 Riccati方程：

01   QPBPBRPAPA TT

可以获得 P和线性反馈增益矩阵K：

 4321
1 kkkkPBRK T  

（三）、倒立摆系统的 LQR最优控制设计

在一般的最优控制问题中，Q和 R都取为对角阵。这里为不失一般性，我们

也遵循这一取法。在确定Q和 R时，我们选用了仿真试凑法。该方法的基本原理

是：首先进行分析，初步选取Q和 R，通过计算机仿真判断其是否符合设计要求。

若符合要求，则停止仿真，当前的Q和 R就是实际控制系统所需要的加权阵。然

后利用计算机可以非常方便地求出最优反馈增益矩阵K，把K代入到实际系统

的控制器参数中就完成了控制器的设计。若不符合要求，则应当重新选取Q和R

并重复仿真以进行判断，直至符合实际系统的性能指标要求为止。

通过对倒立摆系统的 LQR 最优控制设计方法进行分析，我们可以找出系统的

动态响应与Q和 R的选取之间的规律:当Q不变而 R减小时,倒立摆系统的调整

时间与超调量减小,上升时间与稳态误差增大；当 R不变而Q变大时，调整时间

与超调量减小，摆杆的角度变化也同时减小，但上升时间与稳态误差却同时增大。

显然，当Q和 R的变化与上述的两种情况相反时，结论也恰好相反。
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为保证倒立摆的控制目标—稳定性达标，我们针对三阶倒立摆系统在几种不

同的加权矩阵情况下的稳定性进行了测试。最终选择的Q矩阵和 R矩阵分别为：

































1.0
0

140
0

0
700

6000
400

Q ；R=1

相应的最优增益矩阵K为：

 4105.00777.01442.00458.05432.38522.03296.00200.0103 K

四、实验结果与分析

（一）、各种条件下的响应曲线

1. 微调模式（普通不平衡态）

此模式下使得倒立摆处于轻微不平衡态，三个夹角分别为：90°、45°、30°。

Q11=700 Q22=3000 Q33=3000 Q44=3000 R=1
表明此时更关注倒立摆的三个角度（同等重要）
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可以看出系统在 2秒内趋于稳定，调节曲线光滑平坦，超调量小。

说明 LQR控制器在微小变化的调整中效果很好。

2. 起摆：更关注小车位置

此模式下小车初始处于倒悬状态，需要施加控制以起摆。

Q11=3000 Q22=700 Q33=700 Q44=700 R=1
表明此时更关注小车位置，其次是角度，三个角度同样重要。
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可以看出，系统在 3秒内趋于稳定，由于关注小车位置，所以小车横向移动

区间较小，位置的变化也相对平稳。输入量初始值偏大，可能会超过实际控制器

的输出阈值。

3. 起摆：关注所有角度

Q11=700 Q22=3000 Q33=3000 Q44=3000 R=1
此时更关注角度，此控制和 1中微调的参数相同。

与上一节相比，角度的变化更平缓，同时角度在 2.5秒内就趋于稳定，后面

几乎为向零点的平行移动。说明关注角度的情况下更有利于尽快平衡。

4. 起摆：关注第一角度

Q11=600 Q22=1000 Q33=500 Q44=100 R=1
此时更关注第一角度，即第一个摆锤和竖直方向的夹角，二、三角度次之。
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对三个角度关照不同时，系统也在 3秒内趋于稳定，而且最大输出控制仅为

上一节的 2/3，说明此方法有助于节省能量。

5. 起摆：关注输入能量

Q11=1 R=10
对于位置、角度都不关心、R=10远大于 Q，此时目标时控制总能量最小。

在能量最小时，可以看到输出控制能量比上面小了一个数量级。代价就是小

车移动范围变得超长。

6. 起摆：关注输入能量和位置

Q11=600 R=10
此时加入对小车位置的限制。
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此时可以看到输出控制量也远小于前几节，而且小车位移范围急速变小。在

最小能量和最小移动范围两个目标之间找到了一个比较好的权衡。

7. 最优轨线

（原轨线使用MPC算法生成，使用 LQR做轨迹跟踪）

可以看出此控制不愧为最优，其中各指标都非常优秀。需要注意的是，此时

输出量变化特别剧烈，所以对控制器的性能提出了比较高的要求。

下图是 LQR对MPC控制曲线的跟踪结果，可以看到，LQR可以对控制曲

线作出很好的拟合跟踪。
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（二）、各指标对控制效果的影响分析

下表为系统时域动态特性受 q_i(i=1，2，3，4)影响的变化趋势， t_d 为延

迟时间， t_p 为峰值时间， t_s 为调节时间，∆ 为超调量，↑ 表示增大，↓ 表

示减小，- 表示不变。

由表可知：

（1）对于小车位移 x和各个摆杆角位移 θ_1，θ_2，θ_3，q_1 和 q_2 的影

响作用较大， q_3 的影响次之， q_4 影响作用近似于零；

（2）对于系统时域动态特性中的延迟时间 t_d，峰值时间 t_p 和调节时间 t_s，
q_1的影响作用最大，q_2， q_3， q_4的影响作用依次减弱；

（3）对于系统的超调量∆ ，q_2的影响作用最大， q_1， q_3和 q_4 的影响

作用相对较小。

综合看来， q_1 和 q_2 对系统各项特性的影响作用最大， q_3的影响次

之，q_4 影响作用最小。

（三）、结论

1. 对实验结果分析可知，该系统的系统矩阵 A所有的特征值均为正，是一个不稳定系统。

2. 对闭环系统矩阵 Ac进行能控能观性分析的结果表明，系统完全能控，完全能观。

3. LQR控制中最关键的环节是权重矩阵 Q和 R的选择，本项目中的主要被控量为系统的输

出量，故最终的 Q矩阵设置如下：Q=diag(600, 1000, 500, 100, 0, 0, 0, 0)；不失一般性，R矩

阵设置为 1.
4. 求解 LQR问题的 Ricatti方程，得到

K=[26.4575 -89.2095 88.9158 187.7696 31.0493 10.9616 29.0913 21.2290] 。
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