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Evy set of hyperedges that contain a node v
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L number of levels in HyPERLAP
W, s W] weight of each level
5:;} set of nodes in a group g of level £
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Dataset | |V | |E| | avg..glel | maxec |e|
email-Enron 143 1,459 3.13 37
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NDC-classes 1,149 1,049 6.16 39
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coauth-geology 1.091,979 | 909,325 3.87 284
coauth-history 503,868 252,706 3.01 925
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Algorithm 1: HyperCL: Random Hypergraph Generator

Input :(1) distribution of hyperedge sizes {s1,....s|g|}
(2) distribution of node degrees {dy, ..., d'|1|,r|}~
Output:random hypergraph G = (V,E)
1 Ve VandE « @
2 foreach i=1,...,|E| do

3 €j — @

1 while |¢;| < s; do

5 v « select a node with prob. proportional to the
degree

6 € — e; U {v}

7 E e« EU{é;)

s return G = (V, E)
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5.1 HyperLap: %% HyperCL

Algorithm 2: HyperLAP: Realistic Hypergraph Generator

Input :(1) distribution of hyperedge sizes {s1, - ,s|g|}
(2) distribution of node degrees {d;,--- ,dy |}
(3) number of levels L (< log, [V])
(4) weights of each level {wq,--- ,wp}

Output : synthetic hypergraph G = (V. E)

/* Initialization */

Ve {l,---,|V|}andE — @

-

b2

3 /* Hierarchical Node Partitioning #*/
(L) (L)
187, *“';2:,—1
for eachlevel{ =L —-1,---,1do
for each group g=1,---,2 1 do

(6) _ olf+1),  o(€+1)
| sy =siYush

« uniformly partition V into 201 groups

o W

~3

/* Hyperedge Generation */
for eachi=1,---,|E| do

[=-]

k-]

10 { « select a level with prob. proportional to the weight

11 Sbﬂ « select a group at level £ uniformly at random

12 € — @

13 while |¢;| < s; do

14 v « select a node from S;” with prob. proportional
to the degree

15 € =¢€; U {EJ}

6 | E=EU{é)}
17 return G = (V, E)
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5.2 HyperLap+: Z¥%&#

Algorithm 3: HypERLAP™: Automatic Parameter Selection

Input :(1) input hypergraph G = (V, E)
(2) update resolution p
Output:synthetic hypergraph G = (V. E)
G = (V,E) « run HypeErCL using the distributions in G
for each level { = 2,--- ,L do

3 i" e argmingc gy ..y, HHD (G, update(G,p - i, f))

]

=]

4 G « update(G,p - i*,{)
s | if HHD(G,G) < HHD(G,G) then G « G
6 else break

7 return G = (V. E)

1 update(G = (V,E), g, 0)

2 | G(V,E) « G(V.E)

3 remove (g - 100)% of the hyperedges created at level £ — 1
4 create the same number of hyperedges at level ¢

5 return G = (V, E)




YhE AN IEG, AT & HyperLap S50 (BRI L 180 FE N0 1)
BE{wL, -, wL}), UEAR—E R EG, Rl B AR st SO AR R E 2 NAT
AHAEESH, O A R R g5 R PE R L B & M . vk, FRATERH T HyperLap+, &
AT LLE B RS

#BIN55 1 B AR: HyperLap-+/i 4 A\ HE 1K G A AE GHE I G 2 0] B IA 57 YRR B HHD (G,
G) VENF RS ©¥0E SCHGRIG ARIA T 5345 2 18] () Kolmogorov-Smirnov D 4t it

m. Rl

HHD(G,G) = max{|[F(x) ~=F (0]} ()

HAFMF RS BEGAG I RIS . K5, BESAE TSLINEE,
HyperLap+ 1] H 5 A& 38 58 48 2 14 75 B i /MU A E . Wt /& Ui, HyperLap+ 5 75 fif 4k
DN R AT

W12, HHD(G. )

HApBAMBEHRWL +- +wl = 1, FOVHAEREZ M4 EE,

AT R X T Bhn)a, FAEIAR T HyperLap+i ik Hde/Mb. NGRS, i51E
L < log2 |V |BARFEAAS, FBLIENEAIE A log2 | V|-

H T A LR ZANZHBEWL,- wLiH A, FAEH T —MEE 3 iR et
PeAT7 %8, Ferp AR B 2 ) 1) PR 320 P — 0 0 e B 8 O 8 5 v 4 i €0 2 ) 2 ) — 8
gy, BEHE, BB 3 8.

HARKUL, hyperlap Jcilid hypercl ZEp— MK, 0T L = 111 hyperlap (38 1 17)-
EAHS T wlRE AR 1, 38 wl BN 0. REETA BRI N2 3] L, RITFEREZX
| — 18V R — N8, HREeAE JZ RO BB Ia B 8GR 3 17). EiEsE, X

EEPNAN %Eiﬁiid\ﬁﬁﬁiﬂﬁﬁé%ﬁ%ﬁ%o BRI N R B B, RS ST

i) & G IR 5 A7) AT T 1wy M T AR AR w00, BRATTR AT
I & OB IR 6 17)o BATPR B8R p BN 0.05, BATTEER B4 8 B 1 i &
Xt p BEFABUR.

5.3 AR ERERNERITY

6B B A T PRI 22 L b I A R R B s A PR 2 FRATE I b e AT S DY A i 2
2 hypercl, hyperpa [12] , hyperff [22]Ff1K H 1A% hyperlap SKVEALE A RME. FRATITE
sk b R TR SR R E .

T B EE pH S o R AN A R TS I o A 2 T AR R, FRATTE A kolmogorov-
smirnov D-Z 1T &, & XN D = max,|f " (x) — f(x)|, Hdx2 ey SMME, f 7
A f 2 SEBRAFIAE LA B 43 A7 1 SR AR 20 A R A

W 1A 2: 753 8 rh, FRATHR 1 J S H SR B AR B (1) A R B B 3R 2% % FE A
H 3R 2% B 5 FE 53 A [l D-Si i & .

Hyperlap+4= i H1 H F 9 26 2 s e B, X e 1 3 0 24 78 45 4 b 5 Sk 5 (10 1] A A
Bhe BARKUL, hyperlap 25 H T Hua 42 H 1) hyperpa SEARABLR) B 3 2% 2 FE 43 A Al 2.35 i
[ H TR 2% BB 73 AT o

WL 3 M 40 BATH TR G2 TR S L A2 i B2 15 86 WL 5245
34, 7ER 9, FRATULHH TR — XSG =AN T B ES UM EE . 5 hypercl




FHLE, hyperlap &5 473 FFELTS RN s = e B, IXAER 10 TP 433 T Gtit LAIE
s, MR ST B/NG D-GiitE. Ak, X ARfE R 2B T R E R A, NED
A MR R IEE X —H b a] DA LA 4.2 354 RGTHE R TEAE ).
R 7: SLhri E A R R R 316 5 HyperLap+A BRI R R AR E R
Kl STHBREER 6 11

Real-World Data Generated
Dataset
pw tpw  logn pw tpw  logn

email-Enron -1.09  -0.26 -0.38 -2.91  -043  -4.76
email-Eu 090 090 091 -3.00  3.13 2.08
contact-primary  2.19  2.30 2.22 0.67 226 1.90
contact-high 1.55 155 195 2.50 472  3.65
NDC-classes 0.00 0.39 0.18 -0.47  0.87 0.52
NDC-substances 0.64 1.22 1.13 1.87 290 258
tags-ubuntu 225 225 226 =201 7.00 6.19
tags-math -17.66  -7.93 2.62 3.53 6.56 607
threads-ubuntu 458 7.70 6.55 392 425 39
threads-math -0.72  9.00 6.69 4.30 12.10 10.53
coauth-DBLP 401 431 420 10.65 25.23 22.82
coauth-geology  4.29  5.52 5.37 1.75 8.06 7.00
coauth-history - - 1.73 3.98 431 4.02

 8:HyperCL (H-CL). HyperPA (H-PA). HyperFF (H-FF). HyperLap (H-LAP) f1
HyperLap+ (H-LAP+) TR AR 5l ity 90 S 5568 BRI SE B H (1) egonet FJE .
(2) egonet EEM (3) MIAFF D ZEIH D 4iit. HyperLap+EiERFHbEL 1 .

Dataset Density of Egonets (Obs. 1) Overlapness of Egonets (Obs. 2) Homogeneity of Hyperedges (Obs. 5)
H-CL H-PA H-FF  H-LAP H-LAP* H-CL H-PA H-FF  H-LAF H-LAP* H-CL.  H-PA  H-FF H-LAP  H-LAP*
email-Enron 0.545 0.202 0391 0.405 0.125 0.517 0398 0398 0391 0.111 0498 0.241 0.656 0.191 0.136
email-Eu 0.724 - 0.402 0577 0.310 0.534 - 0.639  0.432 0.197 0.505 - 0.688  0.247 0.168
contact-primary  0.896  0.537 0975 0.334 0.128 0.867 0471 0942 0285 0.095 0.430  0.236 0484 0.142 0.188
contact-high 0.948 0529 0.880 0522 0.345 0.874 0431 0703 0486 0.296 0423  0.196 0336 0.120 0.178
NDC-classes 0.694 0785 0731 0.696 0.635 0302 0715 0406 0231 0.248 0.274 0410 0484 0272 0.225
NDC-substances  0.451 - 0.801  0.426 0.366 0.321 - 0.338  0.243 0.157 0.377 - 0.740  0.262 0.108
tags-ubuntu 0522  0.162 0216 0410 0.300 0.432  0.117 0398 0487 0.210 0.245 0136 0844 0.105 0.011
tags-math 0496 0350 0.561 0.195 0.227 0.460 0325 0709 0.151 0.186 0.337 0217 0921 0.086 0.015
threads-ubuntu 0.159  0.856 - 0.163 0.159 0.299  0.953 - 0.300 0.297 0.020 0.291 - 0.016 0.011
threads-math 0.137  0.492 - 0.120 0.135 0.232  0.714 - 0.235 0.229 0.060 0.368 - 0.102 0.019
coauth-DBLP 0.228 - - 0.227 0.132 0.302 - - 0.267 0.244 0.715 - - 0.540 0.026
coauth-geology 0.200 - - 0.202 0.138 0.248 - - 0.252 0.266 0.624 - - 0.481 0.044
coauth-history 0.087 - - 0.090 0.089 0.316 - - 0.321 0.324 0.154 - - 0.125 0.020
Average 0.468 0489 0.619 0.335 0.237 0.439 0515 0.566 0313 0.219 0.358 0.261 0.644 0.206 0.088

- out of time (taking more than 10 hours) or out of memory

& 9:HyperLapHEH I T BN AR S LEBBEUNE RS, T HyperCL 7E¥F
ZRUTRK. BINBRANERDM, BRI —F.

email-Eu contact-primary NDC-substances tags-math threads-ubuntu coauth-DBLP
"

o T ¢ 10 ] 1w 1 10 10 10 10
# overlapping hyperedges # overlapping hyperedges overlapping hyperedges # overlapping hyperedges # overlapping hyperedges # overlapping hyperedges

0 10 10 T 10 W W o 10 R w1
# overlapping hyperedges # overlapping hyperedges # overlapping hyperedges # overlapping hyperedges # overlapping hyperedges # overlapping hyperedges

WEE 5: MR 8 MR TTLUE H, SERRBA SR SEESAE R MERZ
B RIBIEG T 'R/ . T hyperlap+# Hbr/298/> HHD, KIS HAREL hypercl 547 HhF

%
-
[y 10

# node pairs

# node pairs
# node pairs
1 r,

# node pairs
# node pairs
# node pairs

*

# node triples
# node triples
# node triples
# node triples
# node triples
# node triples

Observation 4 | Observation 3




LRI 501, T hypercl fEZHURFH R E SN T, HYEREIR T hyperlap. iX—45 5%
BT iR BTG SR R . sk 7 B, R S A ol ) P R A S P I 23 A A B
RSt Rr e (4075 L3 4.2 719).
# 10: EhrEEHENEENT QR ESEUE E 5 B LMAER A B M E
B d Gitl&: hypercl (h-cl)» hyperpa (h-pa). hyperff (h-ff). hyperlap (h-lap)#
hyperlap (h-lap ). BES BIFHREI T 50, XESFMBEBEEN .

Pair of Nodes (Obs. 3)
Distance from Real (D-statistics)

Triple of Nodes (Obs. 4)
Distance from Real (D-statistics)

Dataset Heavy-tail Test Heavy-tail Test

H.CL H-PA HFF HLAF H-LAP" pw  tpw  logn H-CL H-PA H-FF H-LAP H-LAP* pw  twp logn
email-Enron 0.143  0.056 0.217 04075 0.139 -237  -0.29  -1.53 0.089 0.295 0136 0.061 0.072 -0.22 038 0.24
email-Eu 0.225 - 0352 0.162 0.066 0.24 275 253 0.480 - 0,516 0,337 0.206 0.41 2.11 1.96
contact-primary 0.196 0.062 0223  0.070 0.051 9.53 1574 13.92 0.137 0061 0110 0.053 0.031 -1.86  -1.27 123
contact-high 0.277 0,062 0.141 0127 0.067 -3.09 095 -0.06 0.210  0.131 0182 0.182 0.193 -3.95 - 0.50
NDC-classes 0.273  0.197 019 0246 0.172 12.15 1442 14.04 0.376  0.167 0405 0.349 0.286 3.22 7.92 7.34
NDC-substances  0.272 - 0.244 0251 0.202 33.69 40.13 39.66 0.521 - 0,591 0.492 0.453 45.30 5538 54.99
tags-ubuntu 0.091 0.019 0182 0.034 0.033 42.33 4370 43.55 0.148 0067 0191 0.020 0.074 14.25 1557 15.43
tags-math 0.095 0.066 0278 0073 0.011 42.75 45.60 4541 0.209 0.053 0286 0.113 0.079 21.38 2312 2299
threads-ubuntu ~ 0.011  0.137 - 0.008 0.009 1.28 175 1.75 0.004 0.130 - 0.004 0.004 -1,346  -1.72 0 -1.72
threads-math 0.041  0.163 0.014 0.033 15.79 16,66 16.52 0.006  0.138 0.001 0.005 -1.49  -0.98  0.96
coauth-DBLP 0.224 - 0.191 0.032 55.86 7495 7345 0.215 - 0.214 0.192 2.87 673 646
coauth-geology 0178 0.157 0.040 31.13  45.08 44.06 0.086 0.085 0.069 -0.10 110 0.84
coauth-history 0.033 - - 0.030 0.009 1.74 1.77 1.63 0.001 - - 0.001 0.001 -0.86 - 0.57
Average 0.158  0.095 0229 0110 0.066 0.193 0130 0302 0.147  0.128

-: out of time (taking more than 10 hours) or out of memory
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