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ABSTRACT

Hypergraphs, a generalization of graphs, naturally represent group-
wise relationships among multiple individuals or objects, which
are common in many application areas, including web, bioinfor-
matics, and social networks. The flexibility in the number of nodes
in each hyperedge, which provides the expressiveness of hyper-
graphs, brings about structural differences between graphs and
hypergraphs. Especially, the overlaps of hyperedges lead to com-
plex high-order relations beyond pairwise relations, raising new
questions that have not been considered in graphs: How do hyper-
edges overlap in real-world hypergraphs? Are there any pervasive
characteristics? What underlying process can cause such patterns?
In this work, we closely investigate thirteen real-world hyper-
graphs from various domains and share interesting observations
of the overlaps of hyperedges. To this end, we define principled
measures and statistically compare the overlaps of hyperedges in
real-world hypergraphs and those in null models. Additionally,
based on the observations, we propose HYPERLAP, a realistic hyper-
graph generative model. HYPERLAP is (a) Realistic: it accurately
reproduces overlapping patterns of real-world hypergraphs, (b) Au-
tomatically Fittable: its parameters can be tuned automatically
using HYPERLAP™ to generate hypergraphs particularly similar to
a given target hypergraph, (c) Scalable: it generates and fits a
hypergraph with 0.7 billion hyperedges within few hours.
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1 INTRODUCTION

Group interactions among multiple individuals or objects are om-
nipresent in complex systems: collaborations of co-authors, co-
purchases of items, group communications in question-and-answer
sites, to name a few. They are naturally modeled as a hypergraph
where each hyperedge (i.e., a subset of an arbitrary number of nodes)
represents a group interaction. Hypergraphs are a generalization
of ordinary graphs, which naturally describe pairwise interactions.
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In real-world hypergraphs, hyperedges are overlapped with each
other, revealing interesting relations between them. Due to the
flexibility in the size of each hyperedge, even a fixed number of hy-
peredges can overlap in infinitely many different ways. Moreover,
these relations are high-order, and decomposing them into pairwise
relations loses considerable information. This unique property of
hypergraphs poses important questions that have not been con-
sidered in graphs: (1) How do hyperedges overlap in real-world
hypergraphs? (2) Are there any non-trivial patterns that distinguish
real-world hypergraphs from random hypergraphs? (3) How can
we reproduce the patterns through simple mechanisms?

These questions are partially answered in recent empirical stud-
ies, which reveal structural and dynamical patterns of real-world hy-
pergraphs. The discovered patterns are regarding giant connected
components [12], diameter [12, 22], 3-cliques [5], 3-hyperedge sub-
hypergraphs [24], simplicial closure [5], similarity between tempo-
rally close hyperedges [6], the number of intersecting hyperedges
[22], etc. These patterns are directly or indirectly affected by the
overlaps of hyperedges. Moreover, the overlaps of hyperedges have
been considered for hyperedge prediction [5, 6, 24] and realistic
hypergraph generation [12].

In this work, we complement the previous studies with new
findings, measures, and realistic generative models regarding the
overlaps of hyperedges. To this end, we closely examine thirteen
real-world hypergraphs from six distinct domains. Specifically, we
analyze the overlaps of hyperedges in them at three different levels:
subsets of nodes, hyperedges, and egonets. Then, we verify our find-
ings using randomized hypergraphs, where we overlap hyperedges
randomly while preserving the degrees of nodes and the sizes of hy-
peredges. Our investigation reveals that the overlaps of hyperedges
in real-world hypergraphs show the following properties:

o Substantial: Hyperedges in each egonet tend to overlap more
substantially in real-world hypergraphs than in randomized ones.

e Heavy-tailed: The number of hyperedges overlapping at each
pair or triple of nodes is more skewed with a heavier tail in real-
world hypergraphs than in randomized ones. The number of
overlapping hyperedges follows a near power-law distribution.

e Homophilic: Nodes contained in each hyperedge tend to be
structurally more similar (i.e., more hyperedges overlap at them)
in real-world hypergraphs than in randomized ones.

For the investigation of real-world hypergraphs, we design novel
and principled measures. We show that our measure of overlapness
of hyperedges satisfies three intuitively clear axioms, while a widely-
used density measure does not. We also introduce a measure of
overlapness at subsets of nodes, which reveals interesting near
power-law behaviors, and a measure of homogeneity of hyperedges,
which plays a key role in realistic hypergraph generation.
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Table 1: HYPERLAP* accurately reproduces the overlaps of hyperedges in real-world hypergraphs. Synthetic hypergraphs cre-
ated by HYPERLAP* exhibit (Obs. 1) dense egonets, (Obs. 2) highly overlapped egonets, (Obs. 3) heavy-tailed pair-of-nodes
degree distribution, (Obs. 4) heavy-tailed triple-of-nodes degree distribution, and (Obs. 5) homogeneous hyperedges. We pro-

vide the full results in [1].

Observation 1 Observation 2 Observation 3 Observation 4 Observation 5
u © 100000 n n "
5 - v 75000 'E 107 % 16 o X
g 20000 o o ) N\ E . E | .
Real g .§ 50000 g 1w t 10° g— 10
(threads-math) | =™ g 2000 2 o g . R
#* = | #* # o #* L e |
S o 10000 20000 < 0 0 10000 20000 ot 10° 10° 10t 10% 10! 10°
avg. # nodes W avg. # nodes # overlapping hyperedges # overlapping hyperedges homogeneity
a © 100000 o 10° [} .
8 30000 5 % wl, g o 8w,
+ ® 20000 @ 2000 a ° T 100 2 R
HypPERLAP ‘g S 50000 IR 'y ° g
C 4 T Q.
(Proposed) zreer g0 g 2000 g 2 g W e E3
® R * : #* . #* L = |
o 10000 20000 0 10000 20000 10" 10% 10° 10t 10% 10t 10°
avg. # nodes W avg. # nodes # overlapping hyperedges # overlapping hyperedges homogeneity
31;)‘ 30000 .g 100000 s lv} 108 o 108
8 20000 £ 75000 g % g
1 3
HyreErRPA g 2 50000 g 0 s 5o
: > 10000 v 9] ] g
(Competitor) | 2 g 25000 g g i Z oo
¥ g 2 o * ; Y8 prepeg® & :
o 10000 20000 0 10000 20000 10 10 10 10 10 10t 10°
avg. # nodes W avg. # nodes # overlapping hyperedges # overlapping hyperedges homogeneity

What underlying process can cause hyperedges to systemati-
cally overlap exhibiting the above patterns? We design HypPERLAP,
a stochastic hypergraph generative model. HYPERLAP accurately
reproduces realistic overlapping patterns of hyperedges. In addition,
we present HYPERLAPY, which automatically tunes the parameters
of HYPERLAP to generate synthetic hypergraphs particularly similar
to a given target graph (see Table 1). HYPERLAP gives intuitions
useful in reasoning about and predicting the evolution of the hy-
pergraphs, and it can be used to generate synthetic hypergraphs
for simulations and evaluation of algorithms when it is impossible
to collect or track real hypergraphs. HYyPERLAP" can be used to
anonymize hypergraphs that cannot be publicized to share them.

Our contributions are summarized as follow:

e Observations in Real-world Hypergraphs: We discover three
unique characteristics of the overlaps of hyperedges in real-world
hypergraphs, and we verify them using randomized hypergraphs.

e Novel Measures: We define novel and principled measures re-
garding the overlaps of hyperedges at 3 different levels. They play
key roles in investigation and realistic hypergraph generation.

o Realistic Generative Model: We propose HYPERLAP, a stochas-
tic hypergraph generator that reproduces realistic overlaps of
hyperedges. We also provide HypERLAP*, which automatically
fits the parameters of HYPERLAP to a given hypergraph. Empiri-
cally, they scale near linearly with the number of hyperedges.

Reproducibility: The source code and datasets used in this work
are available at https://github.com/young917/www21-hyperlap.

In Section 2, we discuss related work. In Section 3, we describe
the datasets and the null models used throughout this work. In
Section 4, we share our observations of the overlaps of hyperedges
in real-world hypergraphs. In Section 5, we propose HYPERLAP, a
realistic hypergraph generative model, and provide experimental
results. Lastly, we offer conclusions in Section 6.
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2 RELATED WORK

There have been extensive studies on macroscopic structural pat-
terns [4, 13, 35, 39], microscopic structural patterns [32, 33], and
dynamical patterns [15, 23, 27] in real-world pairwise graphs, and
numerous realistic graph generators [8, 14, 25, 27, 44] for repro-
ducing the discovered patterns have been proposed. In this sec-
tion, we focus on hypergraphs and review previous studies on
empirical patterns in real-world hypergraphs and realistic hyper-
graph generators. Hypergraphs have been used in a wide range of
fields, including computer vision [45], bioinformatics [17], circuit
design [20], social network analysis [41], and recommendation [30].
They have been used in various analytical and learning tasks, in-
cluding classification [18, 40], clustering [3, 28, 29], and hyperedge
prediction [5, 43]. In addition to the realistic hypergraph gener-
ators described below, a number of random hypergraph models
[7,9, 19, 37] have been used for statistical tests.

Benson et al. [5] focused on simplicial closure events (i.e., the first
appearance of a hyperedge containing a set of nodes each of whose
pairs co-appear in previous hyperedges) and investigated how their
probabilities are affected by local features, such as average degree,
in real-world hypergraphs from different domains.

Benson et al. [6] considered sequences (i.e., time-ordered hyper-
edges that are relevant to each other) in real-world hypergraphs and
showed that hypergraphs in a sequence tend to be more similar to
recent hyperedges than distant ones. They also discovered that the
number of hyperedges overlapping at each pair and triple of nodes
tends to be larger in each sequence than in a null model. In addition,
the authors proposed to exploit both patterns when predicting the
next hyperedge in a sequence. Notably, in Section 4.2, we also exam-
ine the number of hyperedges overlapping at each pair and triple
of nodes. However, we (a) examine them at the hypergraph level,
(b) discover their near power-law distributions, and (3) compare
them with those in degree-preserving randomized hypergraphs.
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Table 2: Frequently-used symbols.

Notation ‘ Definition
G=(V,E) hypergraph with nodes V and hyperedges E
E ={e1,....e|g|} | setof hyperedges
E(y set of hyperedges that contain a node v
Es set of hyperedges that contain a subset S of nodes
L number of levels in HYPERLAP

W1, eeey WL weight of each level

S;[) set of nodes in a group g of level £

Do et al. [12] considered projecting a real-world hypergraph
into multiple pairwise graphs so that each k-th graph describes the
interactions between size-k subsets of nodes. They showed that the
pairwise graphs exhibit (a) heavy-tailed degree and singular-value
distributions, (b) giant connected components, (c) small diameter,
and (d) high clustering coefficients. Inspired by the observations,
the authors proposed a hypergraph generator called HypERPA [12].
In HYPERPA, the subset of nodes that form a hyperedge with a new
node is selected with probability proportional to the number of
hyperedges containing the subset.

Kook et al. [22] revealed that the ratio of intersecting hyperedges
and the diameter of real-world hypergraph decreases over time,
while the number of hyperedges increases faster than the number
of nodes. Additionally, they discovered four structural patterns
regarding (a) the number of hyperedges containing each node,
(b) the size of hyperedges, (c) the size of intersections between
two hyperedges, and (d) singular values of incident matrices. In
order to reproduce the patterns, the authors proposed a hypergraph
generator called HYPERFF. For each new node, HyPERFF simulates
forest fire spreading over hyperedges, and the new node forms a
size-2 hyperedge with each burned node. Then, HyPERFF simulates
forest fire again to expand each size-2 hyperedge.

Lee et al. [24] proposed 26 hypergraph motifs (h-motifs), which
are connectivity patterns of three connected hyperedges, based on
the emptiness of the seven Venn diagram regions. They showed
that the relative occurrences of the h-motifs are particularly similar
in real-world hypergraphs from the same domain.

All these findings are directly or indirectly related to the overlaps
of hyperedges. In this work, we complement the previous studies
with new findings, measures, and more realistic and scalable gener-
ators, all of which are related to the overlaps of hyperedges.

3 DATASETS AND NULL MODELS

In this section, we first introduce some notations and preliminaries.
Then, we describe the datasets and the null models used throughout
this paper. Refer to Table 2 for the frequently-used notations.

3.1 Preliminaries and Notations

We review the concept of hypergraphs and then the Chung-Lu
model, which our null model is based on.

Hypergraphs: A hypergraph G = (V, E) consists of a set of nodes
V and a set of hyperedges E C 2". Each hyperedge e C V is a
non-empty subset of |e| nodes. For each node v, we denote the set
of hyperedges that contain v by E(,) := {e € E: v € e}, and the
degree dy, := |E(,| of v is defined as the number of hyperedges
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Table 3: Summary statistics of 13 real-world hypergraphs
from 6 domains: the number of nodes |V|, the number of hy-
peredges |E|, the average hyperedge size avg, le|, and the
maximum hyperedge size max.cr |e|.

Dataset ‘ \4 ‘ |E| ‘ avg.cglel ‘ maXecE |e|
email-Enron 143 1,459 3.13 37
email-Eu 986 24,520 3.62 40
contact-primary 242 12,704 2.41 5
contact-high 327 7,818 2.32 5
NDC-classes 1,149 1,049 6.16 39
NDC-substances 3,767 6,631 9.70 187
tags—ubuntu 3,021 145,053 3.42 5
tags-math 1,627 169,259 3.49 5
threads-ubuntu 90,054 115,987 2.30 14
threads-math 153,806 535,323 2.61 21
coauth-DBLP 1,836,596 | 2,170,260 3.43 280
coauth-geology 1,091,979 | 909,325 3.87 284
coauth-history 503,868 252,706 3.01 925

that contains v. We say two hyperedges e; and e; are overlapped or
intersected if they share any node, i.e., e; Nej # @.

Chung-Lu Models: The Chung-Lu (CL) model [10] is a random
graph model, and it yields graphs where a given degree sequence
of nodes is expected to be preserved. Consider a graph G = (V, E)
where E is a set of pairwise edges. Given a desired degree distri-
bution {d1,ds, ..., d\Vl }, where d; is the degree of the node i, the
CL model generates a random graph by creating an edge between
each pair of nodes with probability proportional to the product of
their degrees. That is, for each pair (i, j) of nodes, the edge e;; is
created with probability # where M = % ZLZ'I dj., assuming
di < W holds for all k. If we let dN,- be the degree of each node i
in the generated graph, its expected value is equal to d;, i.e.,

s oIVl didj v dj _
LA = D g = e ag =

While the CL model flips a coin for all possible O(|V|?) node pairs,
the fast CL (FCL) model [34] samples two nodes independently with
probability proportional to the degree of each node. Then, it creates
an edge between the sampled pair of nodes. This process is repeated
|E| times, and the total time complexity is O(|E|). Even in graphs
generated by the FCL model, the expected degree of each node i is
equal to d;.

3.2 Datasets

We use thirteen real-world hypergraphs from six different do-
mains [5] after removing duplicated or singleton hyperedges. Refer
to Table 3 for some statistics of the hypergraphs.

e email (email-Enron [21] and email-Eu [26, 42]): Each node is
an email account and each hyperedge is a set of the sender and
receivers of an email.

e contact (contact-primary [38] and contact-high [31]): Each node
is a person, and each hyperedge is a group interaction among
individuals.
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o drugs (NDC-classes and NDC-substances): Each node is a class
label (in NDC-classes) or a substances (in NDC-substances) and
each hyperedge is a set of labels/substances of a drug.

e tags (tags-ubuntu and tags-math): Each node is a tag, and each
hyperedge is a set of tags attached to a question.

e threads (threads-ubuntu and threads-math): Each node is a user,
and each hyperedge is a group of users participating in a thread.

e co-authorship (coauth-DBLP, coauth-geology [36], and coauth-
history [36]): Each node is an author and each hyperedge is a set
of authors of a publication.

3.3 Null Model: HYPERCL (Algorithm 1)

We introduce HYPERCL, a random hypergraph generator that ex-
tends the FCL model (see Section 3.1) to hypergraphs. We use ran-
dom hypergraphs generated by HyPERCL as null models throughout
this work. As described in Algorithm 1, the degree distribution of
nodes and the size distribution of hyperedges in a considered real-
world hypergraph are given as inputs. For each i-th hyperedge é;,
its nodes are sampled independently, with probability proportional
to the degree of each node (i.e., the probability is dv/zjl.zll dj for
each node v) until the size of the hyperedge reaches s; (lines 4-6).
Note that duplicated nodes are ignored so that each i-th hypergraph
contains s; distinct nodes.

In hypergraphs generated by HYPERCL, the size distribution of
hyperedges is exactly the same as the input size distribution, and
the degree distribution of nodes is also expected to be similar to
the input degree distribution. Specifically, if we assume Zjlzll dj >

(maxgeqq,...|E} SK) (maxke{l,---,|V|} di) and let d~v be the in a
generated hypergraph,

E[d,] = ZéeE Plv € ¢

- dy dy o
= E L le] - v = v § o €l =do.
e€E Z]lzll dj Z]lzll dj e€E

We show experimentally in [1] that the degree distributions in
hypergraphs generated by HYPERCL are closed to the input degree
distribution.

4 OBSERVATIONS

In this section, we examine overlapping patterns of hyperedges
in real-world hypergraphs, and we verify them by comparison
with those in randomized hypergraphs obtained by HypERCL. We
investigate the overlaps of hyperedges at three different levels, and
our observations are summarized as follow.

e (L1) Egonet Level: The overlaps of hyperedges in the egonet of
each node tend to be more substantial in real-world hypergraphs
than in randomized ones.

e (L2) Pair/Triple of Nodes Level: The number of hyperedges
overlapping at each pair or triple of nodes follows a near (trun-
cated) power-law distribution. Moreover, the number of overlap-
ping hyperedges is more skewed with a heavier tail in real-world
hypergraphs than in randomized ones.

¢ (L3) Hyperedge Level: Hyperedges tend to contain nodes that
are structurally more similar (i.e., nodes where more hyperedges
overlap) in real-world hypergraphs than in randomized ones.
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Algorithm 1: HypERCL: Random Hypergraph Generator

Input :(1) distribution of hyperedge sizes {s1,...,sg|}
(2) distribution of node degrees {d1, ..., d|y |}
Output:random hypergraph G = (V, E)
1 VeVandE « @
foreach i=1,...,|E| do

)

3 € — @

4 while |¢;]| < s; do

5 v < select a node with prob. proportional to the
degree

6 €; — ¢€; U{v}

7 E— EU{é)}
s return G = (V, E)

4.1 L1.Egonet Level

Density of Egonets: We first investigate egonets in real-world hy-
pergraphs. We define the egonet of a node v as the set of hyperedges
that contains v (e, E(y) := {e € E : v € e}). To quantitatively
measure how substantially the hyperedges in an egonet overlap
each other, we first consider the density (see Definition 1) of the
egonets in real-world and randomized hypergraphs, and this leads
to Observation 1. While one might expect the density of a set of

hyperedges & to be defined as the number of hyperedges divided

1]
2“’\—1)’

by the size of the powerset of the induced nodes V (i.e.,
we follow the definition in [16] in this work.

DEFINITION 1 (DENSITY [16]). Given a set of hyperedges &, the
density of the set, p(&) is defined as:
1E]
&)= ———.
P Uees e

OBSERVATION 1. Egonets in real-world hypergraphs tend to be
denser than those in randomized hypergraphs.

Specifically, as seen in the figures in the first row of Table 4, when
considering the egonets with the same number of hyperedges, they
tend to contain fewer nodes in real-world hypergraphs than in
randomized ones. Thus, the density, which is defined as the ratio
of the number of hyperedges to the number of nodes tends to be
higher in real-world hypergraphs than in randomized ones. In the
figures, the slopes of the regression lines, which are close to the
average egonet density, are steeper in real-world hypergraphs than
in randomized ones.

Principled Measure: Overlapness: However, density does not
fully take the overlaps of hyperedges into consideration. Consider
two sets of hyperedges: & = {{a,b,c},{a,b,c,d},{a,b,c,d,e}}
and & = {{v, w,x}, {x,y}, {y, z}}. While, intuitively, &; are over-
lapped more substantially than &, the densities of both sets, which
consist of the same numbers of nodes and hyperedges, are the same.

To address this issue, we first present three axioms that any
reasonable measure of the hyperedge overlaps should satisfy. Then,
we propose overlapness, a new measure that satisfies all the axioms.
The three axioms are formalized in Axioms 1, 2, and 3.

Axrtom 1 (NUMBER oF HYPEREDGES). Consider two sets of hyper-
edges & and &' that contain hyperedges of the same size, and the
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Table 4: Hyperedges in real-world hypergraphs overlap distinctly from those in randomized hypergraphs. We examine (Obs.
1) density of each egonet, (Obs. 2) overlapnesses of each egonet, (Obs. 3) the number of hyperedges overlapping at each pair of
nodes, (Obs. 4) the number of hyperedges overlapping at each triple of nodes, and (Obs. 5) homogeneity of each hyperedge. Re-
garding Observation 5, we preprocessed the continuous values of hyperedge homogeneity by binning them into their nearest

integers. We provide the full results in [1].
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same number of distinct nodes. Then, the set with more hyperedges
is more overlapped than the other. Formally,

((|8| <IE'N A (le] = |¢'] = n, Ve € &, Ve’ € &'

riUel =1l €)= r@ < f&).

ecE e'e&

Ax1om 2 (NUMBER OF DI1sTINCT NoDEs). Consider two hyper-
edges& = {e1, - ,en} and &' = {e;,-~~ ,e'n} with the same num-
ber of hyperedges and the same size distribution of hyperedges. Then,
the set containing less distinct nodes is more overlapped than the
other. Formally,

(181 =181 = m) A (eil = lefl. Vi € {1, ,n)

A e =1 )= f@) < r@).

ec& e'e&’

Axiom 3 (S1zes oF HYPEREDGES). Consider two sets of hyperedges
E={e, ,eptand & = {e;,~-- ,e;l} with the same number of
distinct nodes and the same number of hyperedges. Then, the set with
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Table 5: Overlapness measures the degree of hypergraph
overlaps reasonably, satisfying all the axioms, while the oth-
ers do not. See Appendix A for details.

Metric ‘ Axiom 1 ‘ Axiom 2 ‘ Axiom 3

Intersection

Union Inverse
Jaccard Index
Overlap Coefficient
Density

NS X X % %
NS X XN %
N XX % % %

Overlapness (Proposed) ‘

larger hyperedges is more overlapped than the other. Formally,
UKH=ISW='UA(RH<|4DA(MHSIéLVJE{L-~,n}\ﬁD

riUe =1 €)= f@ < f&).
ecE ee&’

Note that density and the four additional widely-used measures
listed in Table 5 do not satisfy all the axioms. Thus, we propose
overlapness (see Definition 2) as a measure of the degree of hy-
peredge overlaps, and it satisfies all the axioms, as formalized in
Theorem 1.
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Figure 1: Hypergraphs from the same domain share similar
hyperedge overlapping patterns at the egonet level.

DEFINITION 2 (OVERLAPNESS). Given a set of hyperedges &, the
overlapness of the set, o(E) is defined as follow:

2ees el
| Ueee el
THEOREM 1 (SOUNDNESS OF OVERLAPNESS). Overlapness o(-)

satisfies Axioms 1, 2, and 3.
PRrooF. See Appendix A. [ ]

(&) ==

In overlapness, the sum of sizes of hyperedges, instead of the
number of hyperedges, is considered. Notably, the overlapness of
a hyperedge set is equivalent to the average degree of the dis-
tinct nodes in the set. In addition, overlapness is equivalent to
weighted density if we assign the size of each hyperedge as its
weight. Overlapness agrees with our intuition in the previous ex-
ample. That is, for & = {{a,b,c},{a,b,c,d},{a,b,c,d,e}} and
&2 = {{v,w,x}, {x, 4} {y, 2}}, 0(E1) = 12/5 > 0o(E2) = 7/5.
Overlapness of Egonets: We measure the overlapness of egonets
in real-world and randomized hypergraphs, and this leads to Ob-
servation 2. As seen in the figures in the second row of Table 4,
egonets in real-world hypergraphs tends to have higher overlapness
than those in randomized hypergraphs. The slopes of the regression
lines, which are close to the average egonet overlapness, are steeper
in real-world hypergraphs than in randomized ones.

OBSERVATION 2. Egonets in real-world hypergraphs have higher
overlapness than those in randomized hypergraphs.

Comparison across Domains: Furthermore, we compute the sig-
nificance of density and overlapness of egonets in the hypergraph
G which are defined as

. p(G) - p(G”)

G) = ’
sigp(G) maXgew(G), gcw(G) 1P(8) = p(g")I
(G a(G) — o(G’)

MaXge(G), g ew(c’) 10(g) = o(g")’
respectively, where G’ is a randomized hypergraph of G; p(-) and
o(-) are the average egonet density and overlapness, respectively;
and w(-) is the set of egonets. As seen in Figure 1, real-world hyper-
graphs from the same domain share similar significance of density
and overlapness of egonets, indicating that their hyperedges share
similar overlapping patterns at the egonet level.

4.2 L2. Pair/Triple of Nodes Level

Given a pair or triple of nodes, how many hyperedges do overlap
at them? In other words, how many hyperedges do contain the
pair or triple? While the degree is generally defined as the number
of hyperedges that contains each individual node, here we extend
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Table 6: The distribution of the number of hyperedges over-
lapping at each pair or triple of nodes is heavy-tailed and
close to a truncated power-law distribution. This claim is
supported by the reported log-likelihood ratios when fitting
the distributions to each of three heavy-tailed distributions
(power-law, truncated power-law, and log normal) against
the exponential distribution.

Pair of Nodes (Obs. 3) Triple of Nodes (Obs. 4)

Dataset

pw tpw logn pw tpw logn
email-Enron -0.36 4.22 3.50 1.91 3.88 3.47
email-Eu 0.66 148  1.29 021 077 063
contact-primary  0.64  1.40 1.35 0.01 0.48 0.48
contact-high 0.75 0.81 0.79 -1.04 - 0.80
NDC-classes 1349 1574 14.78 24.37 3153  29.19
NDC-substances 38.68 43.87 42.55 102.90 116.45 109.77
tags-ubuntu 39.66 41.55 41.25 17.03  17.84 17.79
tags-math 3.82 449 447 26.97 29.26  29.07
threads-ubuntu 3.79 3.97 3.97 0.34 0.80 0.73
threads-math 14.25 14.78 14.68 -1.04 -0.09 -1.12
coauth-DBLP 19.23 2247 2231 575 584 583
coauth-geology  45.20 53.39 52.92 9.69 13.73  13.01
coauth-history 3.74 3.81 3.91 -0.36 1.42 1.27

the concept to pairs and triples of nodes. Specifically, if we let
Es :={e € E : S C e} be the set of hyperedges overlapping at a
subset S C V of nodes, then the degree of each node pair {i, j} is
defined as d@({i, j}) := |E{; j1|, and the degree of each node triple
{i,j, k} is defined as d(S)({i,j, k}) := |E{; j k|- The degree of a pair
or triple can also be interpreted as the structural similarity between
the nodes in the pair or triple. Intuitively, nodes are structurally
more similar as they are included together in more hyperedges.
Examining the degree distributions of pairs and triples of nodes,
instead of that of individual nodes, gives higher-order insights
on how nodes as a set form hyperedges. In the third and fourth
columns of Table 4, we provide the distributions of d® and d® in
real-world hypergraphs and those in a corresponding randomized
hypergraph. Our findings are summarized in Observations 3 and 4.

OBSERVATION 3. The number of hyperedges overlapping at each
pairof nodes (i.e., degree of each pair) is more skewed with a heavier
tail in real-world hypergraphs than in randomized ones. The distri-
bution is similar to a truncated power law distribution.

OBSERVATION 4. The number of hyperedges overlapping at each
triple of nodes (i.e., degree of each triple) is more skewed with a
heavier tail in real-world hypergraphs than in randomized ones. The
distribution is similar to a truncated power law distribution.

In addition to the visual inspection, we compute the log-likelihood
ratio of three representative heavy-tailed distributions (power-law,
truncated power-law, and log normal) against the exponential dis-
tribution, as suggested in [2, 11]. If the ratio is greater than 0, the
given distribution is more similar to the corresponding heavy-tailed
distribution than an exponential distribution. As reported in Ta-
ble 6, except for one case, at least one heavy-tailed distribution has
a positive ratio, and in most cases the ratio is highest for truncated
power-law distributions. These result support the claim that the
degree distributions of pairs and triples of nodes is heavy-tailed
and similar to truncated power-law distributions.
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Table 7: The distributions of hyperedge homogeneity in real
hypergrpahs and those generated by HYPERLAP* are heavy-
tailed. Log-likelihood ratios are calculated as in Table 6.

Real-World Data Generated
Dataset

pw tpw  logn pw tpw  logn
email-Enron -1.09  -0.26 -0.38 -2.71 -0.43  -4.76
email-Eu 090 0.90 0.91 -3.00 3.13 2.08
contact-primary  2.19  2.30 2.22 0.67 2.26 1.90
contact-high 1.55 155 1.95 2,50 4.72  3.65
NDC-classes 0.00 0.39 0.18 -047 0.87 0.52
NDC-substances 0.64 1.22 1.13 1.87 290 2.58
tags-ubuntu 225 225 2.26 -2.01  7.00 6.19
tags-math -17.66  -7.93 2.62 3.53 6.56 6.07
threads-ubuntu 4.58 7.70 6.55 3.92 425 394
threads-math -0.72  9.00 6.69 430 12.10 10.53
coauth-DBLP 401 431 420 10.65 25.23 22.82
coauth-geology 429 5.52 5.37 1.75 8.06 7.00
coauth-history - - 1.73 3.98 431 4.02

In fact, these results are intuitive. The more often a pair or triple
of nodes interact together, the more likely they are to interact
together again. For example, researchers that have co-authored
multiple papers are likely to share common interests, which can
lead to more collaborations in the future.

4.3 L3. Hyperedge Level

How are nodes that form hyperedges together related to each
other? It is unlikely in real-world hypergraphs that each hyperedge
is formed by nodes chosen independently at random. It is expected
to exist a strong dependency among the nodes forming a hyper-
edge together. In order to investigate the dependency, we use the
homogeneity of hyperedge, defined in Definition 3, to measure how
structurally similar such nodes are.

DEFINITION 3 (HOMOGENEITY OF A HYPEREDGE). The homo-

geneity of a hyperedge e € E is defined as follow:

e Euv
Rt @Bl o> 1

0, otherwise,

homogeneity(e) :=

where (3) is the set of node pairs in e and |E {4} is the number of
hyperedges overlapping at the pair of u and v (i.e., the degree of the
pair {u,v}). Note that, in Eq. (1), the structural similarity between
two nodes is measured in terms of the number of hyperedges over-
lapping at them, which we examine in Section 4.2. Eq. (1) can be
easily extended to three or more nodes.

The figures in the last row of Table 4 show the homogeneity
of the hyperedges in real-world hypergraphs and corresponding
randomized hypergraphs. As summarized in Observation 5, there is
a tendency that the homogeneity of each hyperedge in real-world
hypergraphs is greater than that in randomized ones. Moreover,
we verify that the distribution of homogeneity is heavy-tailed (see
Table 7), as in the previous subsection.

OBSERVATION 5. Hyperedges in real-world hypergraphs tend to
contain structurally more similar nodes (i.e., nodes where many hy-
peredges overlap) than those in randomized hypergraphs.

The homogeneity of hyperedges plays a key role in generating
realistic hypergraphs, as described in the following section.
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Algorithm 2: HyperLAP: Realistic Hypergraph Generator

Input :(1) distribution of hyperedge sizes {s1,--- ,s|g|}
(2) distribution of node degrees {d1,--- ,d|y |}
(3) number of levels L (< log, |V])
(4) weights of each level {wy,---,wr}
Output: synthetic hypergraph G = (V, E)
1 /* Initialization */
Ve{l, -,|V]}andE — @

[N}

3 /* Hierarchical Node Partitioning */

(L) (L)
4 S ’”.’Sszl
5 for eachlevel (=L —-1,---,1do

6 for each group g=1,---,2"1 do

(€) _o(6+1) | o(£+1)
r || sy sy usy

«— uniformly partition V into 2L~1 groups

8 /* Hyperedge Generation */

9 foreachi=1,---,|E| do

10 ¢ « select a level with prob. proportional to the weight

1 Sg) « select a group at level £ uniformly at random

12 6 — @

13 while |€;| < s; do

14 v < select a node from S;f) with prob. proportional
to the degree

15 € =¢; U {’U}

6 | E=EU{é}

17 return G = (V, F)

5 HYPERGRAPH GENERATION

We have shown that overlapping patterns of hyperedges in real-
world hypergraphs are clearly distinguished from those in ran-
domized hypergraphs. In this section, we propose HYPERLAP, a
scalable and realistic hypergraph generative model that reproduces
the realistic overlapping patterns of hyperedges. After describing
HypeRLAP, we present HYPERLAP*, which automatically tunes the
parameters of HYPERLAP so that hypergraphs similar to a given
target hypergraph are generated. Then, we evaluate HYyPERLAP and
HypeRLAP experimentally.

5.1 HyPERLAP: Multilevel HyPERCL

We propose HYPERLAP, a realistic hypergraph generative model
whose pseudocode is described in Algorithm 2. The key idea behind
HypeRLAP is to extend HYPERCL to multiple levels. Recall that
HypeRCL itself cannot accurately reproduce realistic overlapping
patterns, as shown in Section 4.

Description of HYyPERLAP: HYPERLAP, a multilevel extension of
HypERCL, requires two additional inputs: (1) number of levels L and
(2) weights of each level {wy, - - ,wI_}.1 For now, we assume that
the parameters are given; how to set the parameters is discussed
in the next subsection. HYPERLAP consists of the hierarchical node
partitioning step and the hyperedge generation step.

Step 1. Hierarchical Node Partitioning (lines 3 - 7). HyPERLAP
first partitions nodes into groups at every level. Specifically, at
'L should be set such that L < log, |V|.
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every level £ € {1,--- , L}, it randomly divides nodes 2¢=! groups,

denoted by S(f), s, Sng while satisfying the following conditions:
1) S9Nl =g foralli#je {1,207},

@ | UZ“ 1 s“>| vl,

® 150 = L'V" — U foran i e {1,201,

(@) s\ = séf*ll) S forall € < Land i € {1,---, 2071,

The first and second conditions ensure that at each level each node
belongs to exactly one group. The third condition states that the
size of groups at each level are almost uniform. The last condition
states that the groups are hierarchical. That is, if nodes are in the
same group at a level, then they are in the same group at all lower
levels. Note that nodes are divided more finely into smaller subsets
at higher levels. At the lowest level 1, there exist a single group,
which is the same as the entire set of nodes V, whereas at the
highest level L, there exist most groups whose number is 2171,

Step 2. Hyperedge Generation (lines 8 - 16). Once we partition
nodes hierarchically in the previous step, for each i-th hyperedge €;,
HypeRLAP first selects a level with probability proportional to the
weight of each level. That is, each level ¢ is selected with probability
proportional to wy. At the selected level £, HYPERLAP selects a group

Sg) uniformly at random. Then, the nodes forming é; are sampled
independently, with probability proportional to the degree of each
node,? until the size of the hyperedge reaches s;. That is, instead
of taking all nodes into consideration, we divide the nodes into
multiple groups and limit the nodes that a hyperedge can contain
into those in a group. Note that hyperedges generated within the
same group at higher levels are more likely to be overlapped each
other, as fewer nodes are in each group at a higher level. Practically,
since ¢; cannot be generated from a group whose size is smaller

than s;, we select level £ such that £ < log, lsl,‘ + 1.

Degree Preservation of HYPERLAP: In hypergraphs generated
by HyPERLAP, the size distribution of hyperedges is exactly the
same as the input size distribution. Specifically, |€;| = s; holds
foralli € {1,---,|E|}. The degree distribution of nodes is also
expected to be similar to the input degree distribution. In order to
show this, we first provide Lemma 1, which our analysis is based
on.

LEmmaA 1. For each group S;[) at level €, the probability for a

hyperedge e to be generated from Sg) is

¢ w 1
P[eQS;)]=W£‘2€—_1, ()
e

where W, is the sum of the weights of suitable levels. That is, W, =
Ziil wy. where L, = |log, M +1].

si

Proor. Given any hyperedge e, HYPERLAP first randomly selects
a suitable level with probability proportional to the given weight.
Thus, the probability for the level ¢ to be selected is wy/W,. Once
the level is determined, any of the 2(=! groups in level £ is selected
uniformly at random, i.e., with probability 1/2¢~!. The probability
for e to be generated from S(g[) is the product of the two probabilities,
and thus Eq. (2) holds. [ ]
2For each node v € S;‘;), the probability is dy/zjes(gg) dj.
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Algorithm 3: HyPERLAP': Automatic Parameter Selection

Input :(1) input hypergraph G = (V,E)
(2) update resolution p

Output: synthetic hypergraph G = (V, E)
1 G =(V,E) « run HypERCL using the distributions in G
2 for eachlevel { =2,---,L do
3 it — argminie{l’,,,’l/p} HHD (G, update(é,p . i,t’))
4 G « update(G,p - i*, )
s | if HHD(G,G) < HHD(G,G) then G « G
6 else break
7 return G = (V, F)

1 update(G = (V,E), g, £)

2 | G(V,E) — G(V,E)

3 remove (q - 100)% of the hyperedges created at level £ — 1
4 create the same number of hyperedges at level £

5 return G = (V, E)

For each node v, let cfg) be the number of hyperedges that
contain the node v among those generated at level £. Then, the

degree dy, of v in an output hypergraph is the sum of cfg) over
all levels, ie., dy, = ZI(?:l vy di
|E|} Sk- Assume |V] > 2171 dp 00 and

aig). Let dmax = maXgeqy, ...

and Spax = maxge(y, ...,
3

Z]_GS;@ dj > dmax - Smax for all S( ).3 Then,

L
Eldy] = Y EldY)] = Z > Ple s @) Plo € ele € 5y (v)]
=1 =1e€E
- Z e (ﬂ 1 ) |e| dv zf—l
~ el [
S \We 271 Z‘V‘
L
dy ( % Seek lel
G Z |e|'z_ =dv Ty =
Z][:ll dj e<cE =i We Z]l-zll dj

where S;K)(v) is the group at level ¢ containing v. That is, dy is
expected to be close to d;,, as we confirm empirically in [1].

Intuition Behind HYPERLAP: In this section, we provide some
reasons why we expect HYPERLAP to accurately reproduce the
realistic overlapping patterns of hyperedges discovered in Section 4.

o For a pair or triple of nodes belonging to the same small group,
the number of hyperedges overlapping at them is expected to
be high. Thus, the distribution of the number of overlapping
hyperedges at each pair or triple is expected to be skewed.

o As hyperedges can be formed within a small group, which con-
tains structurally similar nodes, the homogeneity of each hyper-
edge is expected to be high. Moreover, as the size of groups varies,
the homogeneity of hyperedges is expected to vary depending
on the size of the groups that they are generated from.

o As the hyperedges in the egonet of each node v are likely to
contain nodes belonging to the same small group with v, their
density and overlapness are expected to be high.

U |V| > 28 - dax,then I, e /S dy = 1/20 forall £ € {1, -+, L}.
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Table 8: D-statistics between the distributions of (1) egonet density, (2) egonet overlapness and (3) hyperedge homogeneity
in real-world hypergraphs and corresponding hypergraphs generated by five models: HyPERCL (H-CL), HYyPERPA (H-PA),
HypERFF (H-FF), HYPERLAP (H-LAP), and HyPErRLAP" (H-LAP*). HYPERLAP" reproduces the distributions most accurately.

Density of Egonets (Obs. 1)

Overlapness of Egonets (Obs. 2)

Homogeneity of Hyperedges (Obs. 5)

Dataset H-CL H-PA H-FF H-LAP H-LAP* H-CL H-PA H-FF H-LAP H-LAP* H-CL H-PA H-FF H-LAP H-LAP*
email-Enron 0.545 0.202 0.391 0.405 0.125 0.517 0.398 0.398 0.391 0.111 0.498 0.241 0.656 0.191 0.136
email-Eu 0.724 - 0.402  0.577 0.310 0.534 0.639  0.432 0.197 0.505 - 0.688  0.247 0.168
contact-primary  0.896 0.537 0.975 0.334 0.128 0.867 0.471 0.942 0.285 0.095 0.430 0.236 0.484 0.142 0.188
contact-high 0.948 0529 0.880 0.522 0.345 0.874 0.431 0.703  0.486 0.296 0.423 0.196 0.336 0.120 0.178
NDC-classes 0.694 0.785 0.731  0.696 0.635 0.302 0.715 0.406 0.231 0.248 0.274 0.410 0.484 0.272 0.225
NDC-substances  0.451 - 0.801  0.426 0.366 0.321 0.338  0.243 0.157 0.377 - 0.740  0.262 0.108
tags-ubuntu 0.522 0.162 0.216 0.410 0.300 0.432 0.117 0.398 0.487 0.210 0.245 0.136 0.844 0.105 0.011
tags-math 0.496 0.350 0.561 0.195 0.227 0.460 0.325 0.709 0.151 0.186 0.337 0.217 0.921 0.086 0.015
threads-ubuntu 0.159  0.856 - 0.163 0.159 0.299  0.953 - 0.300 0.297 0.020 0.291 - 0.016 0.011
threads-math 0.137  0.492 - 0.120 0.135 0232 0.714 - 0.235 0.229 0.060 0.368 - 0.102 0.019
coauth-DBLP 0.228 - - 0.227 0.132 0.302 - 0.267 0.244 0.715 - - 0.540 0.026
coauth-geology  0.200 - - 0.202 0.138 0.248 - 0.252 0.266 0.624 - - 0.481 0.044
coauth-history 0.087 - - 0.090 0.089 0.316 - 0.321 0.324 0.154 - - 0.125 0.020
Average 0.468 0.489 0.619 0.335 0.237 0.439 0.515 0.566 0.313 0.219 0.358 0.261 0.644 0.206 0.088

-: out of time (taking more than 10 hours) or out of memory

Table 9: Distributions of the number of overlapping hyperedges at each pair and each triple of nodes are reproduced accurately
by HypErLAP*, while HyPERCL fails in many cases. They obey heavy-tailed distribution, as in the real ones.
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5.2 HypPERLAP*: Parameter Selection

Given an input hypergraph G, how can we set the parameters of
HyPERLAP (i.e., the number of levels L and the weight of each level
{w1,- -+, wg}) so that it generates a synthetic hypergraph G espe-
cially similar to a target real-world hypergraph? The parameters
should be carefully tuned since the structural properties of the gen-
erated hypergraphs vary depending on their settings. To this end,
we propose HYPERLAP*, which automatically tunes the parameters.

Hyperedge Homogeneity Objective: As its objective function,
HypERLAP* uses the hyperedge homogeneity distance HHD(G, G)
between the input hypergraph G and a generated hypergraph G.
It is defined as the Kolmogorov-Smirnov D-statistics between the
hyperedge homogeneity distribution of G and that of G. That is,

HHD(G. G) = max{|F(x) - F'(x)l}. ®)
X

where F and F’ are the cumulative hyperedge homogeneity distri-
bution of hypergraph G and G, respectively. Then, assuming that
the number of levels L is given, HYPERLAP aims to find the weights
of levels that minimize the hyperedge homogeneity distance. That
is, HYPERLAP" aims to solve the following optimization problem:
min HHD(G,G),

e

Wi, o,

3404

where we assume wy + - - - + wp = 1 since only the ratios between
the weights matter.

Optimization Scheme: Having defined the objective, we describe
how HYPERLAP" minimizes it. To avoid empty groups, L < log, |V|
should hold, and the number of levels L is initialized to |log, |V|].

Since there are infinitely many combinations of level weights
wi, -+, wr, we propose an efficient greedy optimization scheme
described in Algorithm 3, where some fraction of hyperedges cre-
ated at a lower level are replaced with those newly created at a
higher level, repeatedly, until Eq. (3) converges.

Specifically, HYPERLAP™ first generates a hypergraph by Hy-
PERCL, which is equivalent to HyPERLAP with L = 1 (line 1). This is
equivalent to set wy to 1 and set wy to 0 for all £ > 1. Then at each
level ¢ from 2 to L, we search for an optimal fraction of hyperedges
created at level £ — 1 to be replaced with those newly created at

Vi

level £ (line 3). Note that only hyperedges of size ;7
can be replaced. If the replacement strictly decreases the hyperedge
homogeneity distance, then HyPERLAP" updates the current syn-
thetic hypergraph (line 5). This is equivalent to decrease wy_; and
increase wy by the same amount. Otherwise, we return the current
synthetic hypergraph (line 6). We fix the update resolution p to
0.05 throughout this work. We note that the quality of generated
hypergraphs is empirically insensitive to the choices of p.

or smaller
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Table 10: D-statistics between the distributions of the number of overlapping hyperedges at each pair and each triple of nodes
in real-world hypergraphs and corresponding hypergraphs generated by five models: HyPERCL (H-CL), HYyPERPA (H-PA),
HyPERFF (H-FF), HyPERLAP (H-LAP), and HYPERLAP" (H-LAP*). HYPERLAP* reproduces the distributions most accurately,

and these distributions follow heavy-tailed distributions.

Pair of Nodes (Obs. 3)

Triple of Nodes (Obs. 4)

Dataset Distance from Real (D-statistics) Heavy-tail Test Distance from Real (D-statistics) Heavy-tail Test
H-CL H-PA HTFF H-LAP H-LAP* pw  tpw logn H-CL H-PA HFF HLAP H-LAP* pw  twp logn
email-Enron 0.143 0.056 0.217 0.075 0.139 -2.37  -0.29 -1.53 0.089 0.295 0.136 0.061 0.072 -0.22 0.38 0.24
email-Eu 0.225 - 0.352  0.162 0.066 0.24 2.75 2.53 0.480 - 0.516  0.337 0.206 0.41 2.11 1.96
contact-primary  0.196 0.062 0.223  0.070 0.051 9.53 15.74 13.92 0.137  0.061 0.110 0.053 0.031 -1.86  -1.27 1.23
contact-high 0.277 0.062 0.141 0.127 0.067 -3.09 -0.95 -0.06 0.210 0.131 0.182 0.182 0.193 -3.95 - 0.50
NDC-classes 0.273 0.197 0.196 0.246 0.172 12.15 14.42 14.04 0.376 0.167 0.405 0.349 0.286 3.22 7.92 7.34
NDC-substances 0.272 - 0.244 0.251 0.202 33.69 40.13 39.66 0.521 - 0.591 0.492 0.453 45.30 55.38 54.99
tags-ubuntu 0.091 0.019 0.182 0.034 0.033 42.33 43.70 43.55 0.148 0.067 0.191 0.020 0.074 14.25 15.57 15.43
tags—math 0.095 0.066 0.278 0.073 0.011 42.75 45.60 45.41 0.209 0.053 0.286 0.113 0.079 21.38 23.12 2299
threads-ubuntu 0.011  0.137 - 0.008 0.009 1.28 1.75 1.75 0.004 0.130 - 0.004 0.004 -1,346  -1.72  -1.72
threads-math 0.041 0.163 - 0.014 0.033 15.79 16.66 16.52 0.006 0.138 - 0.001 0.005 -1.49  -098 0.96
coauth-DBLP 0.224 - - 0.191 0.032 55.86 74.95 73.45 0.215 - - 0.214 0.192 2.87 6.73 6.46
coauth-geology 0.178 - - 0.157 0.040 31.13 45.08 44.06 0.086 - - 0.085 0.069 -0.10 1.10 0.84
coauth-history 0.033 - - 0.030 0.009 1.74 1.77 1.63 0.001 - - 0.001 0.001 -0.86 - 0.57
Average 0.158 0.095 0.229 0.110 0.066 0.193  0.130 0.302 0.147 0.128
-: out of time (taking more than 10 hours) or out of memory
= - and 4. In Table 9, we illustrate the distributions of the number of
g 107 g 10° - hyperedges overlapping at each pair and each triple of nodes. Com-
& 10 slopsiz, ¢ 2108 P pared to HyPErCL, HYPERLAP" better reproduces the degrees
) ++* slope 1.13 ) .+* slope 1.15 . . L. Il 4
E 100 Lo o €00l 27 of pairs and triples of nodes. This is statistically confirmed in Ta-
€ »" € ,“ ble 10, where HYPERLAP™ gives the smallest D-statistic. In addition,
35 1072 f!’ slope 1 S 100 et slope 1
= L adsl S N these distributions are heavy-tailed in most datasets, as seen from
10° 108 108 10° 10° 10°

# hyperedges # hyperedges

(a) HYPERLAP (generation) (b) HypERLAP" (generation & fitting)

Figure 2: HyPERLAP and HYPERLAP* scale near linearly with
the size of the considered hypergraph.

5.3 Empirical Evaluation of the Quality of
Generated Hypergraphs

How well do the hypergraphs generated by HYPERLAP* reproduce
the structural properties of the input hypergraphs? We evaluate its
effectiveness by comparing them with four strong baselines: Hy-
PERCL, HYPERPA [12], HYPERFF [22], and naively tuned HypERLAP.*
We describe the detailed experimental settings at Appendix B.

To measure the similarity between the distributions derived from
the real-world hypergraph and the generated hypergraph, we use
the Kolmogorov-Smirnov D-statistic, defined as D = maxy {|F’(x)—
F(x)|}, where x is a value of the considered random variable, and
F’ and F are the cumulative distribution functions of the real and
corresponding generated distributions.

Observations 1 and 2: In Table 8, we report the D-statistics be-
tween the distributions of egonet density and egonet overlapness in
real-world hypergraphs and corresponding synthetic hypergraphs.
HyYPERLAP" generates hypergraphs that consist of egonets
that are structurally most similar to those in real-world hy-
pergraphs. Specifically, HyPERLAP" gave 2.06X more similar
egonet density distribution and 2.35X more similar egonet over-
lapness distribution than recently proposed HYPERPA.

Observations 3 and 4: We visually and statistically test whether
the hypergraphs generated by HypERLAP* follow observations 3

4We set the number of levels L same as HyPERLAP® and assign the weights
{w1, - - -, wr } uniformly equal, i, w; =1/LV1 <i < L.
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the fact that at least one likelihood ratio is positive (see Section 4.2
for the details of the statistical test).

Observation 5: From the results in Table 8, we can see that the D-
statistics between the distributions of hyperedge homogene-
ity in real-world and corresponding hypergraphs generated
by HYPERLAP* are extremely small. Since the objective of Hy-
PERLAP" is to reduce the HHD, it naturally reproduce hyperedge
homogeneity better than HyPERCL, which surprisingly outperforms
HyperRLAP when its parameters are naively set. This result suggests
the effectiveness of the proposed optimization scheme. As seen in
Table 7, the distributions of hyperedge homogeneity in hypergraphs
generated by HYPERLAP" are heavy-tailed (see Section 4.2 for the
details of the statistical test).

5.4 Scalability of HyPERLAP and HYPERLAP*

In this subsection, we analyze the scalability of HYPERLAP and
HyperLAP" both theoretically and experimentally. Noteworthy, we
show empirically that both HypERLAP and HyPERLAP" scale almost
linearly with the size of the considered hypergraph.

In fact, while some baselines are intractable in particular datasets,
HyperLAP and HYPERLAP™ are scalable enough to be executed in all
considered datasets. The scalability of HYPERPA heavily depends on
the sizes of hyperedges, and thus does not work in hypergraphs that
includes large-sized hyperedges (i.e., email-Eu, NDC-substances,
coauth-DBLP, coauth-geology, and coauth-history). HYPERFF de-
pends on the number of nodes, and does not work in large datasets
with many nodes (i.e., threads-ubuntu, threads-math, coauth-DBLP,
coauth-geology, and coauth-history).

Given the number of levels and weights of each level, how much
time does it take to run HYPERLAP? Assume that all sets and maps
are implemented using hash tables. For each hyperedge e, level
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¢ and group g are selected in O(1) time. In addition, since each
node is sampled independently, |e| nodes are selected in O(|e] - (1 +
€)) time, where € is due to the possibility of collisions (i.e., nodes
selected multiple times for a hyperedge). The term € depends on
the degrees of nodes and the sizes of hyperedges. We note that € is
empirically very small in the considered datasets. Hence, generating
|E| hyperedges takes O(X.cg(le| - (1 +€))) time. In HyPERLAP*, we
consider the replacement step. At each level, at most 11) -|E| = O(|E|)
hyperedges are (temporarily) replaced, taking O(}.cg(le]| - (1 +¢€)))
time. Since the maximum number of levels is log, | V|, HypERLAP*
takes O(log, |V| - Xecg(lel - (1 + €))) time in total.

In Figure 2, we measure the runtimes of HyPERLAP and Hy-
pPERLAP" with synthetic hypergraphs of different sizes. They are
generated by upscaling the smallest hypergraph, email-Enron by 5
to 50, 000 times, using HYPERLAP. Both HyPERLAP and HYPERLAP*
scale almost linearly with the size of the considered hypergraph.
Specifically, HyPERLAP* generates and fits a synthetic hypergraph
with 0.7 billion hyperedges within few hours. We describe the de-
tailed experimental settings at Appendix B.

6 CONCLUSIONS

In this work, we investigate the structural properties regarding the
overlaps of hyperedges of thirteen real-world hypergraphs from
six domains. To this end, we define several principled measures,
and based on the observations, we develop a realistic hypergraph
generative model. We summarize our contributions as follows.

e Observations in Real-world Hypergraphs: We discover three
unique properties of the overlaps of hyperedges in real-world
hypergraphs. We verify these properties using randomized hy-
pergraphs where both the degrees of nodes and the sizes of
hyperedges are well preserved.

e Novel Measures: We propose the overlapness and homogeneity

of hyperedges. We demonstrate through an axiomatic approach

that overlapness is a principled measure. Homogeneity reveals

an interesting overlapping pattern, based on which we develop a

realistic generative model.

Realistic Generative Model: We propose HYPERLAP, a hyper-

graph generative model that accurately reproduces the overlap-

ping patterns of hyperedges in real-world hypergraphs. We also
provide HyPERLAP", which automatically fits the parameters of

HyPERLAP to a given graph. They generate and fit a hypergraph

with 0.7 billion hyperedges within few hours.

Reproducibility: The source code and datasets used in this work
are available at https://github.com/young917/www21-hyperlap.
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A APPENDIX: AXIOMS OF OVERLAPNESS

We systematically analyze overlapness defined in Section 4.1 by
comparing with possible baselines and proving that the metric
satisfies all the proposed axioms.

Baselines: Due to the simplicity and intuitiveness of the afore-
mentioned axioms, one might hypothesize that it is trivial to sat-
isfy them. However, as seen in Table 5, none of the other possible
baseline metrics obey all three axioms. We consider five different
baseline metrics including two basic set operations:

e Intersection: [Nees el

1/l Ueeg el
[Neegel/lUeeg el
[Nees el/mingeg lel
11/ Ueeg el

Using the intersection of multiple hyperedges as the measure is
applicable to only a small number of hyperedges (i.e., small k)
due to its strict condition that nodes should be included in all the
given hyperedges. Accordingly, other possible measures to gauge
the overlaps such as the Jaccard index or the overlap coefficient,
which use intersection size as a numerator, face the same challenge.
The inverse of the union meets Axiom 2, while it does not satisfy
Axiom 1 and Axiom 3. The density of the hyperedges satisfies
Axiom 1 and Axiom 2, while it does not satisfy Axiom 3, which is
clear from the example discussed in Section 4.1. We provide detailed
examples and reasons why each baseline measure does not satisfy
at least one axiom in the online appendix [1].

e Union Inverse:

e Jaccard Index:

e Overlap Coefficient:
¢ Density [16]:

Proof of Theorem 1: We show that overlapness meets all three
axioms discussed in Section 4.1. That is, we prove Theorem 1 by
proving Lemmas 2, 3, and 4, which Theorem 1 follows from.

LEmMA 2. Overlapness meets Axiom 1.

Proor. Considering the conditions in Axiom 1, we compare the
overlapness of & and &”:

3407

Geon Lee, Minyoung Choe, and Kijung Shin

regr €’ (& = |1E
A& ol = Zeeer ¥ Tecplel _n (818D
[Uereer €'l 1Uees el [ Uees €l
from the conditions | Uepeg el = |Uepreg €’| and le] = |e’| =

n, Ye € &, Ve’ € &’. Since the number of hyperedges in &’ is
larger than that in & (i.e., |E| > |&]), o(E") > o(E) holds. This
implies Axiom 1. u

LeEmMA 3. Overlapness meets Axiom 2.

Proor. Considering the conditions in Axiom 2, we compare the
overlapness of & and £”:

o) _ Seee e / Secelel _ [Ueeeel

o€)  [Ueee €] |Ueesel |Ueee €'l
from the conditions |E| = |&’| = nand |e;| = |¢]|, Vi € {1,...,n}.
Since the number of nodes in & is more than &’ (i.e., | Ueeg €] >
|Upee €'l, ‘;((%)) > 1 holds, and thus o(&") > o(&). This implies
Axiom 2. ]

LEmMMA 4. Overlapness meets Axiom 3.

Proor. Considering the conditions in Axiom 3, we compare the
overlapness of & and &:

Tecele!l  Teeslel _ Zioylepl = lexD
[Ueeer el 1Ueesel  [Ueesel

from the conditions |E] = |E’] = nand |Ugegel = | Ueres €]
Since |e;| < e}], and |ej| < |e]’.|, Vje{1,...,n}\ {i}, o(E") > o(E)
holds. This implies Axiom 3. n

o(&) - 0o(E) =

B APPENDIX: EXPERIMENTAL SETTINGS

We describe the environmental settings where we conducted ex-
periments covered in this paper.

Machines: We conducted all the experiments on a machine with
an AMD Ryzen 9 3900X CPU and 128GB RAM.

Datasets: We used thirteen real-world hypergraphs from six dif-
ferent domains. See Section 3.2 for details of the datasets.

Baselines: We evaluate HyPERLAP and HYPERLAP™ by comparing
with following three baseline models:

e HyYPERCL: This model, which is described in Section 3.3, is a
generalization of the FCL model to hypergraphs. It preserves
well the degree distribution of the input hypergraph.
HypPERPA [12]: This model, which is described in Section 2,
extends the preferential attachment model to hypergraphs so
that each new node forms a hyperedge with each subset of nodes,
rather than individual nodes, with probability proportional to
the number of the hyperedges containing the subset.
HyPERFF [22]: This model, which is described in Section 2,
extends the forest fire model to hypergraphs. The model has two
parameters, which are the burning and expanding rates. We set
them to 0.51 and 0.2, as suggested in the paper.

Implementations: We implemented HyPERCL and HYPERLAP us-
ing C++. For HYPERPA and HyPERFF, we used their open-source
implementations in Python. °

5The open-source implementations are available at https://github.com/manhtuando97/
KDD-20-Hypergraph and https://github.com/yunbum-kook/icdm20-hyperff.
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